An engineered glutamate-gated chloride (GluCl) channel for sensitive, consistent neuronal silencing by ivermectin.

نویسندگان

  • Shawnalea J Frazier
  • Bruce N Cohen
  • Henry A Lester
چکیده

A modified invertebrate glutamate-gated Cl(-) channel (GluCl αβ) was previously employed to allow pharmacologically induced silencing of electrical activity in CNS neurons upon exposure to the anthelmintic drug ivermectin (IVM). Usefulness of the previous receptor was limited by 1) the high concentration of IVM necessary to elicit a consistent silencing phenotype, raising concern about potential side effects, and 2) the variable extent of neuronal spike suppression, due to variations in the co-expression levels of the fluorescent protein-tagged α and β subunits. To address these issues, mutant receptors generated via rational protein engineering strategies were examined for improvement. Introduction of a gain-of-function mutation (L9'F) in the second transmembrane domain of the α subunit appears to facilitate β subunit incorporation and substantially increase heteromeric GluCl αβ sensitivity to IVM. Removal of an arginine-based endoplasmic reticulum retention motif (RSR mutated to AAA) from the intracellular loop of the β subunit further promotes heteromeric expression at the plasma membrane possibly by preventing endoplasmic reticulum-associated degradation of the β subunit rather than simply reducing endoplasmic reticulum retention. A monomeric XFP (mXFP) mutation that prevents fluorescent protein dimerization complements the mutant channel effects. Expression of the newly engineered GluCl opt α-mXFP L9'F + opt β-mXFP Y182F RSR_AAA receptor in dissociated neuronal cultures markedly increases conductance and reduces variability in spike suppression at 1 nm IVM. This receptor, named "GluClv2.0," is an improved tool for IVM-induced silencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric modulation of ligand gated ion channels by ivermectin.

Ivermectin acts as a positive allosteric regulator of several ligand-gated channels including the glutamate-gated chloride channel (GluCl), gamma aminobutyric acid type-A receptor, glycine receptor, neuronal alpha7-nicotinic receptor and purinergic P2X4 receptor. In most of the ivermectin-sensitive channels, the effects of ivermectin include the potentiation of agonist-induced currents at low c...

متن کامل

Characterization of Glutamate-Gated Chloride Channels in the Pharynx of Wild-Type and Mutant Caenorhabditis elegans Delineates the Role of the Subunit GluCl-a2 in the Function of the Native Receptor

Glutamate-gated chloride (GluCl) channels are the site of action of the anthelmintic ivermectin. Previously, the Xenopus laevis oocyte expression system has been used to characterize GluCl channels cloned from Caenorhabditis elegans. However, information on the native, pharmacologically relevant receptors is lacking. Here, we have used a quantitative pharmacological approach and intracellular r...

متن کامل

Dorsal unpaired median neurons of locusta migratoria express ivermectin- and fipronil-sensitive glutamate-gated chloride channels.

Together with type A GABA and strychnine-sensitive glycine receptors, glutamate-gated chloride channels (GluCl) are members of the Cys-loop family of ionotropic receptors, which mediate fast inhibitory neurotransmission. To date, GluCls are found in invertebrates only and therefore represent potential specific targets for insecticides, such as ivermectin and fipronil. In this study, we identifi...

متن کامل

Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels.

Selectively reducing the excitability of specific neurons will (1) allow for the creation of animal models of human neurological disorders and (2) provide insight into the global function of specific sets of neurons. We focus on a combined genetic and pharmacological approach to silence neurons electrically. We express invertebrate ivermectin (IVM)-sensitive chloride channels (Caenorhabditis el...

متن کامل

Molecular Cloning and Characterization of Novel Glutamate-Gated Chloride Channel Subunits from Schistosoma mansoni

Cys-loop ligand-gated ion channels (LGICs) mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni. Full-length cDNAs were obtained for SmGluCl-1 (Smp_096480), SmGluCl-2 (Smp_015630) and SmGlu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 29  شماره 

صفحات  -

تاریخ انتشار 2013